Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 9: 1232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937760

RESUMO

Bacterial species differ greatly in the number and location of the rRNA operons which may be present in the bacterial chromosomes and plasmids. Most bacterial species contain more than one ribosomal RNA operon copy in their genomes, with some species containing up to 15 such copies. We review the number and location of the rRNA operons and discuss evolution of 16S rRNA (rrs) genes -which are considered as ultimate chronometers for phylogenetic classification- in bacteria with multiple copies of these genes. In these bacterial species, the rrs genes must evolve in concert and sequence changes generated by mutation or horizontal gene transfer must be either erased or spread to every gene copy to avoid divergence, as it occurs when they are present in different species. Analysis of polymorphic sites in intra-genomic rrs copies identifies putative conversion events and demonstrates that sequence conversion is patchy and occurs in small conversion tracts. Sequence conversion probably arises by a non-reciprocal transfer between two or more copies where one copy contributes only a small contiguous segment of DNA, whereas the other copy contributes the rest of the genome in a fairly well understood molecular process. Because concerted evolution implies that a mutation in any of the rrs copies is either eliminated or transferred to every rrs gene in the genome, this process should slow their evolution rate relative to that of single copy genes. However, available data on the rrs genes in bacterial genomes do not show a clear relationship between their evolution rates and the number of their copies in the genome.

2.
Front Microbiol ; 8: 1397, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790994

RESUMO

A strain of Vibrio parahaemolyticus that emerged in 1995 caused the first known pandemic involving this species. This strain comprises clonal autochthonous ocean-dwelling bacteria whose evolution has occurred in the ocean environment. The low sequence diversity in this population enabled the discovery of information on its origin and evolution that has been hidden in bacterial clones that have evolved over a long period. Multilocus sequencing and microarray analysis, together with phylogenetic analysis, of pandemic and pre-pandemic isolates has suggested that the founder clone was an O3:K6 non-pathogenic strain that initially acquired a toxRS/new region and subsequently acquired at least seven novel genomic islands. Sequencing and comparison of whole genomes later confirmed these early observations, and it confirmed that most of the genetic changes occurred via gene conversion involving horizontally transmitted DNA. The highly clonal population rapidly diversified, especially in terms of antigenicity, and 27 serotypes have already been reported. Comparisons of the core genomes derived from the founder clone indicate that there are only a few hundred single-nucleotide variations between isolates. However, when the whole genome is considered (the core plus non-core genome and from any clonal frame), the amount of DNA with a different clonal frame can reach up to 4.2% and the number of single-nucleotide variations can reach several hundred thousand. Altogether, these and previous observations based on multilocus sequence typing, microarray analysis, and whole-genome sequencing indicate the large contribution made by DNA with different clonal genealogy to genome diversification. The evidence also indicates that horizontal gene transfer (HGT) caused the emergence of new pathogens. Furthermore, the extent of HGT seems to depend on the vicissitudes of the life of each bacterium, as exemplified by differences in thousands of base pairs acquired by HGT among almost identical genetic isolates.

4.
BMC Microbiol ; 17(1): 118, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28525966

RESUMO

BACKGROUND: Vibrio parahaemolyticus is an autochthonous marine bacterial species comprising strains able to grow in broth containing bile salts at 37 °C, a condition seldom found in the ocean. However, this condition is used for isolation in the laboratory because it is considered a necessary property for pathogenesis. In this context, revealing how gene expression enables V. parahaemolyticus to adapt to this particular condition -common to almost all V. parahaemolyticus isolates- will improve our understanding of the biology of this important pathogen. To determine the genes of V. parahaemolyticus differentially expressed when growing in isolation condition (37 °C, 0.9% NaCl, and 0.04% bile salts) referred to those at the temperature and salt concentration prevailing in ocean south of Chile (marine-like condition; 12 °C, 3% NaCl, and absence of bile salts) we used high-throughput sequencing of RNA. RESULTS: Our results showed that in the isolation condition, among the 5034 genes annotated in the V. parahaemolyticus RIMD2210633 genome, 344 were upregulated and 433 downregulated referred to the marine-like condition, managing an adjusted P-value (Padj) < E-5. Between the 50 more highly expressed genes, among the small RNAs (sRNA), the three carbon storage regulators B (CsrB) were up four to six times, while RyhB, related to iron metabolism besides motility control, was down about eight times. Among proteins, BfdA, a hemolysin-co-regulated protein (Hcp1) secreted by T6SS1, one of the most highly expressed genes, was about 140 times downregulated in isolation condition. The highest changes in relative expression were found among neighboring genes coding for proteins related to respiration, which were about 40 times upregulated. CONCLUSIONS: When V. parahaemolyticus is grown in conditions used for laboratory isolation 777 genes are up- or downregulated referred to conditions prevailing in the marine-like condition; the most significantly overrepresented categories among upregulated processes were those related to transport and localization, while secretion and pathogenesis were overrepresented among downregulated genes. Genes with the highest differential expression included the sRNAs CsrB and RhyB and the mRNAs related with secretion, nutritional upshift, respiration and rapid growing.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sequência de Bases , Chile , Meios de Cultura/química , Meio Ambiente , Ensaios de Triagem em Larga Escala , Oceanos e Mares , RNA Bacteriano/genética , Água do Mar/microbiologia , Alinhamento de Sequência , Temperatura , Vibrioses/microbiologia , Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/patogenicidade
5.
PLoS One ; 11(4): e0152515, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27071075

RESUMO

Flavobacterium psychrophilum is a fish pathogen in salmonid aquaculture worldwide that causes cold water disease (CWD) and rainbow trout fry syndrome (RTFS). Comparative genome analyses of 11 F. psychrophilum isolates representing temporally and geographically distant populations were used to describe the F. psychrophilum pan-genome and to examine virulence factors, prophages, CRISPR arrays, and genomic islands present in the genomes. Analysis of the genomic DNA sequences were complemented with selected phenotypic characteristics of the strains. The pan genome analysis showed that F. psychrophilum could hold at least 3373 genes, while the core genome contained 1743 genes. On average, 67 new genes were detected for every new genome added to the analysis, indicating that F. psychrophilum possesses an open pan genome. The putative virulence factors were equally distributed among isolates, independent of geographic location, year of isolation and source of isolates. Only one prophage-related sequence was found which corresponded to the previously described prophage 6H, and appeared in 5 out of 11 isolates. CRISPR array analysis revealed two different loci with dissimilar spacer content, which only matched one sequence in the database, the temperate bacteriophage 6H. Genomic Islands (GIs) were identified in F. psychrophilum isolates 950106-1/1 and CSF 259-93, associated with toxins and antibiotic resistance. Finally, phenotypic characterization revealed a high degree of similarity among the strains with respect to biofilm formation and secretion of extracellular enzymes. Global scale dispersion of virulence factors in the genomes and the abilities for biofilm formation, hemolytic activity and secretion of extracellular enzymes among the strains suggested that F. psychrophilum isolates have a similar mode of action on adhesion, colonization and destruction of fish tissues across large spatial and temporal scales of occurrence. Overall, the genomic characterization and phenotypic properties may provide new insights to the mechanisms of pathogenicity in F. psychrophilum.


Assuntos
Flavobacterium/genética , Flavobacterium/patogenicidade , Análise de Sequência de DNA/métodos , Virulência/genética , Biofilmes/crescimento & desenvolvimento , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Farmacorresistência Bacteriana/genética
6.
Front Microbiol ; 7: 2160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123382

RESUMO

In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae.

7.
Electron. j. biotechnol ; 18(6): 459-463, Nov. 2015. ilus
Artigo em Inglês | LILACS | ID: lil-772291

RESUMO

Background The surveillance of Vibrio parahaemolyticus in the Chilean coast has been mainly performed by multiplex PCR amplification of three different hemolysin genes, which are specie-specific virulence factors. These genes are also employed in the determination of V. parahaemolyticus pathogenic load in seafood and for characterization of pathogenic strains associated to diarrhea cases in human. During environmental surveillance that we performed every summer, we occasionally observed a thermolabile hemolysin (tlh) PCR product of a slightly smaller size than expected, which was coincident with low loads of V. parahaemolyticus in the environment. In order to understand this observation, we probed the specificity of tlh primers for the detection of V. parahaemolyticus at different bacterial loads and DNA concentrations. Results Primers used for the detection of V. parahaemolyticus specific tlh amplified a slightly smaller tlh gene, which is found in Vibrio alginolyticus and other related strains. These amplicons were observed when V. parahaemolyticus was absent or in undetectable loads in the environment. Conclusions Surveillance of V. parahaemolyticus using tlh primers can be imprecise because amplification of a V. parahaemolyticus specific marker in V. alginolyticus and other related strains occurs. This situation complicates potentially the estimation of bacterial load in seafood, because do not ensure the correct identification of V. parahaemolyticus when his load is low. Additionally, it could complicate the tracking of outbreaks of V. parahaemolyticus infections, considering the genetic markers used would not be specie-specific.


Assuntos
Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/genética , Fatores de Virulência , Monitoramento Epidemiológico , Proteínas Hemolisinas , Vibrionaceae , Reação em Cadeia da Polimerase Multiplex
8.
Front Microbiol ; 6: 300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25932022

RESUMO

Infectious salmon anemia virus (ISAV) has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi) is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA) to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3) with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP), fusion (F), hemagglutinin (HE), and matrix (M) proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE) and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

9.
BMC Genomics ; 16: 176, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25880192

RESUMO

BACKGROUND: New strains of Vibrio parahaemolyticus that cause diarrhea in humans by seafood ingestion periodically emerge through continuous evolution in the ocean. Influx and expansion in the Southern Chilean ocean of a highly clonal V. parahaemolyticus (serotype O3:K6) population from South East Asia caused one of the largest seafood-related diarrhea outbreaks in the world. Here, genomics analyses of isolates from this rapidly expanding clonal population offered an opportunity to observe the molecular evolutionary changes often obscured in more diverse populations. RESULTS: Whole genome sequence comparison of eight independent isolates of this population from mussels or clinical cases (from different years) was performed. Differences of 1366 to 217,729 bp genome length and 13 to 164 bp single nucleotide variants (SNVs) were found. Most genomic differences corresponded to the presence of regions unique to only one or two isolates, and were probably acquired by horizontal gene transfer (HGT). Some DNA gain was chromosomal but most was in plasmids. One isolate had a large region (8,644 bp) missing, which was probably caused by excision of a prophage. Genome innovation by the presence of unique DNA, attributable to HGT from related bacteria, varied greatly among the isolates, with values of 1,366 (ten times the number of highest number of SNVs) to 217,729 (a thousand times more than the number of highest number of SNVs). CONCLUSIONS: The evolutionary forces (SNVs, HGT) acting on each isolate of the same population were found to differ to an extent that probably depended on the ecological scenario and life circumstances of each bacterium.


Assuntos
Variação Genética , Genoma Bacteriano , Vibrio parahaemolyticus/genética , Animais , Bivalves/microbiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Transferência Genética Horizontal , Humanos , Pandemias , Plasmídeos/genética , Plasmídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Vibrioses/epidemiologia , Vibrioses/microbiologia , Vibrio parahaemolyticus/classificação , Vibrio parahaemolyticus/isolamento & purificação
10.
Genome Announc ; 2(4)2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25013148

RESUMO

Vibrio anguillarum phage CHOED was isolated from Chilean mussels. It is a virulent phage showing effective inhibition of V. anguillarum. CHOED has potential in phage therapy, because it can protect fish from vibriosis in fish farms. Here, we announce the completely sequenced genome of V. anguillarum phage CHOED.

11.
Microb Ecol ; 67(4): 748-57, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24557506

RESUMO

Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed.


Assuntos
Bacteriófagos/fisiologia , Flavobacterium/genética , Flavobacterium/virologia , Variação Genética , Aquicultura , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Chile/epidemiologia , DNA Bacteriano/genética , Dinamarca/epidemiologia , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Geografia , Especificidade de Hospedeiro , Filogenia , RNA Ribossômico 16S/genética , Estados Unidos/epidemiologia
12.
FEMS Microbiol Lett ; 351(1): 51-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24267868

RESUMO

Flavobacterium psychrophilum is currently one of the most devastating fish pathogens worldwide causing considerable economic losses in salmonid aquaculture. Recently, attention has been drawn to the use of phages for controlling F. psychrophilum, and phages infecting the pathogen have been isolated. Here, we present the genome sequence of F. psychrophilum bacteriophage 6H and its distribution as prophage in F. psychrophilum isolates. The DNA sequence revealed a genome of 46 978 bp containing 63 predicted ORFs, of which 13% was assigned a putative function, including an integrase. Sequence analysis showed > 80% amino acid similarity to a specific region found in the virulent F. psychrophilum strain JIP02/86 (ATCC 49511), suggesting that a prophage similar to phage 6H was present in this strain. Screening for a collection of 49 F. psychrophilum strains isolated in Chile, Denmark, and USA for the presence of four phage 6H genes (integrase, tail tape protein and two hypothetical proteins) by PCR showed the presence of these prophage genes in 80% of the isolates. In conclusion, we hypothesize that bacteriophage 6H belongs to an abundant group of temperate phages which has lysogenized a large fraction of the global F. psychrophilum community.

13.
Environ Microbiol ; 15(2): 527-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23051148

RESUMO

Seafood consumption-related diarrhoea increased drastically in Chile when the pandemic strain of Vibrio parahaemolyticus serotype O3:K6 reached Region de Los Lagos, where most of Chile's seafood is produced. Outbreaks peaked in 2005 with 3725 clinical cases in this region and gradually decreased to fewer than 10 cases in 2010 and 2011. We show here that the pandemic strain concurrently vanished from mussels; we also report further environmental data. Integration of the 2010/2011 data with those obtained since 2004 suggests that after its arrival in southern Chile, the pandemic strain grew in mussels, likely facilitated by a minor rise in surface seawater temperature and by warming of the mussels in the intertidal region due to frequent sunny days. However, since these environmental parameters probably equally affected the pandemic strain and more than 30 V. parahaemolyticus DNA restriction clusters that inhabit local shellfish, a selective effect of bacteriophages is proposed. Lytic bacteriophage VP93 may have favoured the growth of the pandemic strain versus similar phage-sensitive strains, as shown here in a particular case. However, the pandemic strain's decline may have been promoted by temperate phage VP58.5, which kills the pandemic strain and increases the UV sensitivity of lysogenized phage-resistant cells.


Assuntos
Vibrioses/epidemiologia , Vibrio parahaemolyticus/fisiologia , Bacteriófagos/genética , Biodiversidade , Chile , Microbiologia Ambiental , Humanos , Pandemias , Salinidade , Alimentos Marinhos/microbiologia , Frutos do Mar/microbiologia , Luz Solar , Temperatura , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/virologia
14.
PLoS One ; 7(9): e44783, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984557

RESUMO

Soybean meal (SBM) is an important protein source in animal feed. However, the levels of SBM inclusion are restricted in some animal species by the presence of antinutritional factors (ANFs), including non-starch polysaccharides (NSPs) and α-galactosides (GOSs). The aim of this study was to reduce the soybean meal NSPs and GOSs by solid-state fermentation (SSF) using a combination of cellulolytic bacteria isolated from different environments (termites, earthworms, corn silage and bovine ruminal content). To analyse the key enzymatic activities, the isolates were grown in minimal media containing NSPs extracted from SBM. The selected bacterial strains belonged to the genera Streptomyces, Cohnella and Cellulosimicrobium. SSF resulted in a reduction of nearly 24% in the total NSPs, 83% of stachyose and 69% of raffinose and an increase in the protein content. These results suggest that cellulolytic bacteria-based SSF processing facilitates SBM nutritional improvement. In addition, the use of fermented SBM in animal diets can be recommended.


Assuntos
Ração Animal/análise , /metabolismo , Animais , Bactérias/metabolismo , Celulase/química , Celulose/química , Primers do DNA/química , Fermentação , Galactosídeos/química , Oligossacarídeos/química , Polimorfismo de Fragmento de Restrição , Polissacarídeos Bacterianos/metabolismo , RNA Ribossômico/química , RNA Ribossômico 16S/metabolismo , Rafinose/química , Rúmen/metabolismo , Amido/química , Streptomyces/metabolismo
15.
PLoS One ; 7(2): e31335, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393360

RESUMO

This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota of rainbow trout. Full sibling fish from four unrelated families, each consisting of individuals derived from the mating of one male and one female belonging to a breeding program, were fed diets containing either vegetable proteins or vegetable oils for two months in comparison to a control diet consisting of only fish protein and fish oil. Two parallel approaches were applied on the same samples: transcriptionally active bacterial populations were examined based on RNA analysis and were compared with bacterial populations obtained from DNA analysis. Comparison of temporal temperature gradient gel electrophoresis (TTGE) profiles from DNA and RNA showed important differences, indicating that active bacterial populations were better described by RNA analysis. Results showed that some bacterial groups were significantly (P<0.05) associated with specific families, indicating that microbiota composition may be influenced by the host. In addition, the effect of diet on microbiota composition was dependent on the trout family.


Assuntos
Eletroforese em Gel de Gradiente Desnaturante/métodos , Intestinos/microbiologia , RNA Ribossômico 16S/genética , Ração Animal , Animais , DNA Bacteriano/metabolismo , Ecologia , Enterite/microbiologia , Metagenoma , Microscopia de Fluorescência/métodos , Oncorhynchus mykiss , Filogenia , Óleos de Plantas/metabolismo , Reação em Cadeia da Polimerase/métodos , RNA/metabolismo , Verduras/metabolismo
16.
PLoS One ; 7(1): e30823, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292049

RESUMO

The emergence of the pandemic strain Vibrio parahaemolyticus O3:K6 in 1996 caused a large increase of diarrhea outbreaks related to seafood consumption in Southeast Asia, and later worldwide. Isolates of this strain constitutes a clonal complex, and their effectual differentiation is possible by comparison of their variable number tandem repeats (VNTRs). The differentiation of the isolates by the differences in VNTRs will allow inferring the population dynamics and microevolution of this strain but this requires knowing the rate and mechanism of VNTRs' variation. Our study of mutants obtained after serial cultivation of clones showed that mutation rates of the six VNTRs examined are on the order of 10(-4) mutant per generation and that difference increases by stepwise addition of single mutations. The single stepwise mutation (SSM) was deduced because mutants with 1, 2, 3, or more repeat unit deletions or insertions follow a geometric distribution. Plausible phylogenetic trees are obtained when, according to SSM, the genetic distance between clusters with different number of repeats is assessed by the absolute differences in repeats. Using this approach, mutants originated from different isolates of pandemic V. parahaemolyticus after serial cultivation are clustered with their parental isolates. Additionally, isolates of pandemic V. parahaemolyticus from Southeast Asia, Tokyo, and northern and southern Chile are clustered according their geographical origin. The deepest split in these four populations is observed between the Tokyo and southern Chile populations. We conclude that proper phylogenetic relations and successful tracing of pandemic V. parahaemolyticus requires measuring the differences between isolates by the absolute number of repeats in the VNTRs considered.


Assuntos
Evolução Molecular , Repetições Minissatélites/genética , Vibrioses/epidemiologia , Vibrioses/microbiologia , Vibrio parahaemolyticus/genética , Variação Antigênica/genética , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/análise , DNA Bacteriano/genética , Variação Genética , Humanos , Repetições de Microssatélites/genética , Taxa de Mutação , Pandemias , Filogenia , Vibrio parahaemolyticus/classificação
17.
Mol Ecol ; 19(18): 3924-37, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20735744

RESUMO

The dynamics of dissemination of the environmental human pathogen Vibrio parahaemolyticus are uncertain. The O3:K6 clone was restricted to Asia until its detection along the Peruvian coasts and in northern Chile in 1997 in phase with the arrival of El Niño waters. A subsequent emergence of O3:K6 strains was detected in austral Chile in 2004. The origin of these 1997 and 2004 population radiations has not yet been conclusively determined. Multiple loci VNTR analysis using seven polymorphic loci was carried out with a number of representative strains from Asia, Peru and Chile to determine their genetic characteristics and population structure. Asian and Chilean subpopulations were the most genetically distant groups with an intermediate subpopulation in Peru. Population structure inferred from a minimum-spanning tree and Bayesian analysis divided the populations into two genetically distinct groups, consistent with the epidemic dynamics of the O3:K6 clone in South America. One group comprised strains from the original Asiatic population and strains arriving in Peru and Chile in 1997. The second group included the remaining Peruvian Strains and Chilean strains obtained from Puerto Montt in 2004. The analysis of the arrival of the O3:K6 clone at the Pacific coasts of South America has provided novel insights linking the origin of the invasion in 1997 to Asian populations and describing the successful establishment of the O3:K6 populations, first in Peru and subsequently in the South of Chile owing to a possible radiation of Peruvian populations.


Assuntos
Variação Genética , Repetições Minissatélites , Vibrio parahaemolyticus/genética , Algoritmos , Ásia , Teorema de Bayes , Chile , Análise por Conglomerados , DNA Bacteriano/genética , Genética Populacional , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites , Modelos Genéticos , Peru , Filogenia , Análise de Sequência de DNA , Vibrio parahaemolyticus/classificação
18.
Environ Microbiol ; 12(4): 990-1000, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20105216

RESUMO

A clonal population of pathogenic Vibrio parahaemolyticus O3 : K6 serovar has spread in coastal waters, causing outbreaks worldwide since 1996. Bacteriophage infection is one of the main factors affecting bacterial strain concentration in the ocean. We studied the occurrence and properties of phages infecting this V. parahaemolyticus pandemic strain in coastal waters. Analysing 143 samples, phages were found in 13. All isolates clustered in a closely related group of podophages with at least 90% nucleotide sequence identity in three essential genes, despite distant geographical origins. These bacteriophages were able to multiply on the V. parahaemolyticus pandemic strain, but the impact on host concentration and subsequent growth was negligible. Infected bacteria continued producing the phage but were not lysogenized. The phage genome of prototype strain VP93 is 43 931 nucleotides and contains 337 bp direct terminal repeats at both ends. VP93 is the first non-Pseudomonas phage related to the PhiKMV-like subgroup of the T7 supergroup. The lack of a major effect on host growth suggests that these phages exert little control on the propagation of the pandemic strain in the environment. This form of phage growth can be modelled if phage-sensitive and -resistant cells that convert to each other with a high frequency are present in clonal cultures of pandemic V. parahaemolyticus.


Assuntos
Bacteriófagos/genética , Vibrio parahaemolyticus/virologia , Animais , Bacteriófagos/fisiologia , Peixes/microbiologia , Genoma Viral , Água do Mar/microbiologia , Água do Mar/virologia , Frutos do Mar/microbiologia , Replicação Viral
19.
Appl Environ Microbiol ; 75(23): 7482-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19801458

RESUMO

Seafood consumption-related diarrhea became prevalent in Chile when the pandemic strain of Vibrio parahaemolyticus serotype O3:K6 reached a region in the south of Chile (Region de los Lagos) where approximately 80% of the country's seafood is produced. In spite of the large outbreaks of clinical infection, the load of V. parahaemolyticus in shellfish of this region is relatively low. The pandemic strain constitutes a small but relatively stable group of a diverse V. parahaemolyticus population, composed of at least 28 genetic groups. Outbreaks in Region de los Lagos began in 2004 and reached a peak in 2005 with 3,725 clinical cases, all associated with the pandemic strain. After 2005, reported cases steadily decreased to a total of 477 cases in 2007. At that time, 40% of the clinical cases were associated with a pandemic strain of a different serotype (O3:K59), and 27% were related to V. parahaemolyticus isolates unrelated to the pandemic strain. In the results published here, we report that in the summer of 2008, when reported cases unexpectedly increased from 477 to 1,143, 98% of the clinical cases were associated with the pandemic strain serotype O3:K6, a change from 2007. Nevertheless, in 2009, when clinical cases decreased to 441, only 64% were related to the pandemic strain; the remaining cases were related to a nonpandemic tdh- and trh-negative strain first identified in shellfish in 2006. Overall, our observations indicate that the pandemic strain has become a relatively stable subpopulation and that when the number of diarrhea cases related to the pandemic strain is low, previously undetected V. parahaemolyticus pathogenic strains become evident.


Assuntos
Diarreia/epidemiologia , Surtos de Doenças , Microbiologia Ambiental , Doenças Transmitidas por Alimentos/epidemiologia , Alimentos Marinhos/microbiologia , Vibrioses/epidemiologia , Vibrio parahaemolyticus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Chile/epidemiologia , Diarreia/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Incidência , Sorotipagem , Vibrioses/microbiologia , Vibrio parahaemolyticus/classificação
20.
J Virol ; 83(18): 9313-20, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19587034

RESUMO

Vibrio parahaemolyticus O3:K6 pandemic strains recovered in Chile frequently possess a 42-kb plasmid which is the prophage of a myovirus. We studied the prototype phage VP58.5 and show that it does not integrate into the host cell chromosome but replicates as a linear plasmid (Vp58.5) with covalently closed ends (telomeres). The Vp58.5 replicon coexists with other plasmid prophages (N15, PY54, and PhiKO2) in the same cell and thus belongs to a new incompatibility group of telomere phages. We determined the complete nucleotide sequence (42,612 nucleotides) of the VP58.5 phage DNA and compared it with that of the plasmid prophage. The two molecules share the same nucleotide sequence but are 35% circularly permuted to each other. In contrast to the hairpin ends of the plasmid, VP58.5 phage DNA contains 5'-protruding ends. The VP58.5 sequence is 92% identical to the sequence of phage VHML, which was reported to integrate into the host chromosome. However, the gene order and termini of the phage DNAs are different. The VHML genome exhibits the same gene order as does the Vp58.5 plasmid. VHML phage DNA has been reported to contain terminal inverted repeats. This repetitive sequence is similar to the telomere resolution site (telRL) of VP58.5 which, after processing by the phage protelomerase, forms the hairpin ends of the Vp58.5 prophage. It is discussed why these closely related phages may be so different in terms of their genome ends and their lifestyle.


Assuntos
Plasmídeos , Prófagos/classificação , Prófagos/genética , Telômero , Vibrio parahaemolyticus/virologia , Integração Viral , Sequência de Bases , Chile , DNA Viral , Genoma Viral , Conformação de Ácido Nucleico , Prófagos/fisiologia , Sequências Repetitivas de Ácido Nucleico , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...